Real-time monitoring of the adherence of Streptococcus anginosus group bacteria to extracellular matrix decorin and biglycan proteoglycans in biofilm formation.
نویسندگان
چکیده
Members of the Streptococcus anginosus group (SAGs) are significant pathogens. However, their pathogenic mechanisms are incompletely understood. This study investigates the adherence of SAGs to the matrix proteoglycans decorin and biglycan of soft gingival and alveolar bone. Recombinant chondroitin 4-sulphate(C4S)-conjugated decorin and biglycan were synthesised using mammalian expression systems. C4S-conjugated decorin/biglycan and dermatan sulphate (DS) decorin/biglycan were isolated from ovine alveolar bone and gingival connective tissue, respectively. Using surface plasmon resonance, adherence of the SAGs S. anginosus, Streptococcus constellatus and Streptococcus intermedius to immobilised proteoglycan was assessed as a function of real-time biofilm formation. All isolates adhered to gingival proteoglycan, 59% percent of isolates adhered to alveolar proteoglycans, 70% to recombinant decorin and 76% to recombinant biglycan. Higher adherence was generally noted for S. constellatus and S. intermedius isolates. No differences in adherence were noted between commensal and pathogenic strains to decorin or biglycan. DS demonstrated greater adherence compared to C4S. Removal of the glycosaminoglycan chains with chondroitinase ABC resulted in no or minimal adherence for all isolates. These results suggest that SAGs bind to the extracellular matrix proteoglycans decorin and biglycan, with interaction mediated by the conjugated glycosaminoglycan chain.
منابع مشابه
Differential expression of proteoglycans biglycan and decorin during neointima formation after stent implantation in normal and atherosclerotic rabbit aortas.
Proteoglycans decorin and biglycan, which bind to TGF-beta, are thought to participate in regulation of extracellular matrix accumulation in arterial intimal hyperplasia. To investigate the correlation of these proteoglycans with the cellular localization and phenotypic modulation of smooth muscle cells (SMCs), we analyzed the spatial and chronological distribution of these proteoglycans and tw...
متن کاملDifferential roles for small leucine-rich proteoglycans in bone formation.
This paper reviews our current state of knowledge of the roles the small leucine-rich proteoglycans (SLRPs) play in the formation of connective tissue and mineralised tissue matrices. Both, the SLRPs biglycan and decorin are highly expressed in extracellular bone matrix and there is now substantial evidence to support an increasing role for biglycan and decorin in influencing bone cell differen...
متن کاملComplexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan.
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-...
متن کاملUterine Dysfunction in Biglycan and Decorin Deficient Mice Leads to Dystocia during Parturition
Cesarean birth rates are rising. Uterine dysfunction, the exact mechanism of which is unknown, is a common indication for Cesarean delivery. Biglycan and decorin are two small leucine-rich proteoglycans expressed in the extracellular matrix of reproductive tissues and muscle. Mice deficient in biglycan display a mild muscular dystrophy, and, along with mice deficient in decorin, are models of E...
متن کاملModulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone
BACKGROUND We have previously demonstrated that four members of the family of small leucine-rich-proteoglycans (SLRPs) of the extracellular matrix (ECM), named decorin, biglycan, lumican and fibromodulin, are deeply remodeled in mouse uterine tissues along the estrous cycle and early pregnancy. It is known that the combined action of estrogen (E2) and progesterone (P4) orchestrates the estrous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Research in microbiology
دوره 163 6-7 شماره
صفحات -
تاریخ انتشار 2012